NRE6102 Plasma Physics
Spring 2006

By Andrew Seltzman
Note convention:
Within these notes T is taken to be kT where k is the Boltzmann constant and T is in Kelvin.
Fusion
To fuse light nuclei, the coulomb repulsion must be overcome by initial kinetic energy. The initial energy is stored in the form of thermal motion of the ions in a plasma. For fusion the ions must collide at approximately 
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While fusion relies primarily on collisions, to successfully overcome the coulomb barrier these collisions must be nearly head on. Since the majority of collisions occur at small scattering angles, the confinement time must be large in order to provide a higher probability for a head on collision to occur.
Plasma

A plasma is an ionized combination of electrons and ions that exhibits the following properties:
· Quasineutrality: the average charge over a large volume is 0, therefore the electron and ion densities are equal

·  Dimensions exceed the debye length: plasma can provide electrostatic screening of a test charge within it’ volume
· Minimal impurities
· Collective behavior: The plasma acts as a single fluid

Reaction rate
The reaction rate in a plasma is dependant on the ion collision energy and therefore the temperature. The temperature of a plasma has a Maxwellian distribution.
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Maxwellian distribution
The reaction rate is calculated from the cross section.
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 where 
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 is the velocity distribution function of a given species.
Fusion Ignition

In a reactor system we want the energy balance to allow alpha heating to maintain fusion temperatures within the plasma without external power input. 
In a fusion reaction the neutron carries approximately 80% of the reaction energy and escapes the plasma to be used in power production when it is absorbed externally.
The ignition criterion is given by
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where 
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 is the fusion energy (3.5MeV for deuterium)
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 are the radiative power losses and
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Using a best case scenario with no radiative losses, the fusion parameter can be solved for by simple algebra.
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 is approximately 3E21 keV(
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For a tokamak
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Plasma
Since plasmas have a high particle density, it is impossible to numerically solve for the interactions between any particle and every other one in the plasma.
Consider a plasma with a non-uniform charge distribution given by the Maxwell-Boltzmann distribution.
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for a small exponent the first order approximation is
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 and the local charge density is 
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The generated potential is given by Poisson’s equation
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where the debye length is
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This is the farthest distance that a test charge within a plasma can interact electrostaticly with other particle before its field is screened by the neighboring charges.
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The electrostatic potential of a point charge is given by
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so we look for a solution in this form

Within a plasma the potential of a point charge is attenuated exponentially due to the shielding effect from other charges.
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This approximates a pure coulomb potential for 
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We now introduce the plasma approximation
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Since the electric field farther then 
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 from a particle is attenuated by a factor of e, we can claim that outside of
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, the particles electric field does not interact with other particles. We further claim that within
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, the particle interacts with all other particles with a 
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At any given point in the plasma, the equation of motion of a given particle is determined by the coulomb scattering and the Lorenz force law.
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For the plasma approximation to be valid, it must satisfy the plasma condition. That is to say that the number of particles within the debye sphere must be sufficiently dense to screen out the particles charge, and allow the exponent to be approximates as 1.
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Collective plasma effects
Plasma frequency

Consider a section of plasma where you could move a section of electrons between 
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The excess charge at 
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 is given by 
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 generating an electric field by gausses law for a sheet charge
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 which will generate a force on the charge distribution at 
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, attempting to restore equilibrium.

The equation of motion for this system is given by
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The solution to this differential equation (second order homogeneous) is
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In other words the electrons will accelerate towards the positively charged area, over shoot and accelerate back causing an oscillation to occur at 
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For fusion plasma 
[image: image42.wmf]pe

w

 is about 1E11 rad/s

Coulomb scattering
Solving the two body motion problem with coulomb forces, we find that as one particle approaches another it experiences a force due to coulomb repulsion. This will cause the particles to deflect and scatter off one another at an angle related to the impact parameter X which specifies the hypothetical distance of closest approach if the particle had not been deflected. Since debye screening is present, we only solve for interactions with particles closer then 
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Often we like to work this problem in the center of mass reference frame (right) instead of the lab reference frame (left).
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Converting between lab and COM reference frame.
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This equation can be solved as
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x= impact parameter
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= angle in COM reference frame
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The scattering angle can then be derived from
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Solving for the lab frame with
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Using trigonometric identities, important approximations of this are
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Cross sectional scattering area
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For the previous scattering angle formula we find that particles in an annular ring between x and x + dx will scatter into an angle between 
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For a given particle flux, the amount scattered into the solid angle 
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 is defined as the cross sectional area of the annular ring between x and x + dx.
Scattering cross section is given by 
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Rutherford scattering formula 
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Large scattering angles
The probability for a 90 degree or greater scattering event is the probability that a particle approaches a second within a disk defined by an impact parameter Xmin that is the largest X that will produce a 90 degree scattering angle.
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The critical impact parameter can be derived from
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such that


[image: image66.wmf](

)

(

)

(

)

2

12

2

2

0

90

4

c

r

ee

mv

sq

pe

³=

o


Small scattering angles

By observing the Rutherford cross section we see that is more probable that a particle will scatter 90 degrees through a series of small angle collisions.
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In the limit of small angle collisions (
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 since in the small angle limit 
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We can use this formula to define the mean square deflection test
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 using the substitution 
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 plugging in 
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 integrating over X
We now define the bounds of integration within the coulomb logarithm:
The maximum impact parameter that an interaction can take place over is the debye length since all other charges further away then this are electrostaticly screened out.
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The minimum impact parameter is that which will cause a 90 degree scattering to occur. We define this as the upper limit on small scattering angles.

[image: image79.wmf]12

min

2

0

4

r

ee

x

mv

pe

=


Plugging these values into the solution we say.
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We now define the coulomb logarithm.

[image: image81.wmf](

)

1/2

3

max0

42

min221

()

lnlnln12

xT

xnee

e

p

æö

æöéù

ç÷

L==

ç÷

êú

ç÷

èøëû

èø

 which is about 15-20 for fusion plasmas
Assuming that the particle velocity is given by 
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By setting 
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 the 90 degree scattering cross section through small angles can be defined as.
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By comparing the cross sectional probabilities of small and large angle scattering we find that a particle is about 100 times more likely to scatter through small angle collisions, therefore we ignore large scattering events in our calculations.
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Characteristic times
The time required to scatter 90 degrees through small angle collisions can be found by dividing the characteristic length by the velocity. The characteristic time is a good indication of how fast particles will loose organized momentum and reach thermal equilibrium with other particles.
We can use this to determine that an electron beam in a plasma will diverge very quickly, however an ion beam will retain its focus longer, scattering electrons as it passes.

In COM frame
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electron->electron 
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about 1s
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Energy transfer in collisions
The energy transferred between two particles in a collision can be determined from collision kinematics.

Consider two particles 
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Assuming an elastic collision, both KE and P are conserved.
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 conservation of KE
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 conservation of P in the x axis
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 conservation of P in the y axis
Final velocities of these particles are
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The energy transfer between the two particles can now be determines as
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For multiple small angle collisions 
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 and the equation simplifies to
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The times of energy equalization are given by
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Resistively
Previously we have determined that particle collisions scatter organized momentum.

The equation of motion with scattering included is

[image: image113.wmf]4

22

900

ln

2

eeee

e

ei

ee

dvmven

meEeE

dtmv

tpe

L

=--=--


The electric field accelerates electrons and ions, while the scattering converts the organized drift into thermal energy among the particles. Since the second term decreases with increasing velocity, electrons which exceed the Dreicer velocity will not be slowed down and will continue to accelerate (runaway electrons).
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The current density is now defined as
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For the limit where drift velocity is greater then thermal velocity the equation of motion is solved for resistivity.


[image: image116.wmf]2

e

e

m

dj

Ej

endt

h

=-



[image: image117.wmf]2

23/2

0

ln()

123()

e

mze

T

h

pe

L

=

 resistivity
_1198470433.unknown

_1198913376.unknown

_1199338521.unknown

_1199345899.unknown

_1199346524.unknown

_1199346960.unknown

_1199347212.unknown

_1199347503.unknown

_1199347735.unknown

_1199347307.unknown

_1199346961.unknown

_1199346824.unknown

_1199346825.unknown

_1199346797.unknown

_1199346211.unknown

_1199346259.unknown

_1199345915.unknown

_1199346123.unknown

_1199340997.unknown

_1199345066.unknown

_1199345889.unknown

_1199345891.unknown

_1199345610.unknown

_1199344668.unknown

_1199340156.unknown

_1199340157.unknown

_1199339562.unknown

_1199340155.unknown

_1199338581.unknown

_1198914783.unknown

_1198915727.unknown

_1198963736.unknown

_1198964025.unknown

_1198964327.unknown

_1198963737.unknown

_1198915804.unknown

_1198915805.unknown

_1198915755.unknown

_1198914981.unknown

_1198915241.unknown

_1198915275.unknown

_1198914980.unknown

_1198913715.unknown

_1198913881.unknown

_1198913977.unknown

_1198913817.unknown

_1198913499.unknown

_1198913581.unknown

_1198913379.unknown

_1198913498.unknown

_1198473384.unknown

_1198912300.unknown

_1198913165.unknown

_1198913240.unknown

_1198912410.unknown

_1198473691.unknown

_1198912077.unknown

_1198473467.unknown

_1198471902.unknown

_1198472299.unknown

_1198472851.unknown

_1198473028.unknown

_1198472686.unknown

_1198472000.unknown

_1198470649.unknown

_1198470666.unknown

_1198470457.unknown

_1198470588.unknown

_1198443581.unknown

_1198445261.unknown

_1198446233.unknown

_1198446931.unknown

_1198470425.unknown

_1198446830.unknown

_1198446116.unknown

_1198445377.unknown

_1198446072.unknown

_1198444111.unknown

_1198445094.unknown

_1198445141.unknown

_1198444929.unknown

_1198443798.unknown

_1198443919.unknown

_1198443797.unknown

_1187358435.unknown

_1198443375.unknown

_1198443397.unknown

_1198443426.unknown

_1198443376.unknown

_1198442637.unknown

_1198442745.unknown

_1198441045.unknown

_1187358839.unknown

_1187343884.unknown

_1187353103.unknown

_1187358433.unknown

_1187358434.unknown

_1187356776.unknown

_1187350945.unknown

_1187343295.unknown

_1187343733.unknown

_1187343193.unknown

